chapter

The Standard Atmosphere

Sometimes gentle, sometimes capricious, sometimes awful, never the same for two
moments together; almost human in its passions, almost spiritual in its tenderness,

almost divine in its infinity.

John Ruskin, The Sky

Aerospace vehicles can be divided into two basic categories: atmospheric vehicles
such as airplanes and helicopters, which always fly within the sensible atmosphere,
and space vehicles such as satellites, the Apollo lunar vehicle, and deep-space probes,
which operate outside the sensible atmosphere. However, space vehicles do encounter
the earth’s atmosphere during their blastoffs from the earth’s surface and again during
their reentries and recoveries after completion of their missions. If the vehicle is a
planetary probe, then it may encounter the atmospheres of Venus, Mars, Jupiter, etc.
Therefore, during the design and performance of any aerospace vehicle, the properties
of the atmosphere must be taken into account.

The earth’s atmosphere is a dynamically changing system, constantly in a state
of flux. The pressure and temperature of the atmosphere depend on altitude, location
on the globe (longitude and latitude), time of day, season, and even solar sunspot
activity. To take all these variations into account when considering the design and
performance of flight vehicles is impractical. Therefore, a standard atmosphere is
defined in order to relate flight tests, wind tunnel results, and general airplane design
and performance to acommon reference. The standard atmosphere gives mean values
of pressure, temperature, density, and other properties as functions of altitude; these
values are obtained from experimental balloon and sounding-rocket measurements
combined with a mathematical model of the atmosphere. To a reasonable degree,
the standard atmosphere reflects average atmospheric conditions, but this is not its
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main importance. Rather, its main function is to provide tables of common reference
conditions that can be used in an organized fashion by aerospace engineers every-
where. The purpose of this chapter is to give you some feeling for what the standard
atmosphere is all about and how it can be used for acrospace vehicle analyses.

We might pose the rather glib question: Just what is the standard atmosphere?
A rather glib answer is: The tables in Apps. A and B at the end of this book. Take a
look at these two appendixes. They tabulate the temperature, pressure, and density
for different altitudes. Appendix A is in SIunits, and App. B is in English engineering
units. Where do these numbers come from? Were they simply pulled out of thin air
by somebody in the distant past? Absolutely not. The numbers in these tables were
obtained on a rational, scientific basis. One purpose of this chapter is to develop this
rational basis. Another purpose is to show you how to use these tables.

The road map for this chapter is given in Fig. 3.1. We first run down the left side
of the road map, establishing some definitions and an equation from basic physics
(the hydrostatic equation) which are necessary tools for constructing the numbers
in the standard atmosphere tables. Then we move to the right side of the road map
and discuss how the numbers in the tables are actually obtained. We go through the
construction of the standard atmosphere in detail. Finally, we define some terms that
are derived from the numbers in the tables—the pressure, density, and temperature
altitudes—which are in almost everyday use in acronautics.

Finally, we note that the details of this chapter are focused on the determination
of the standard atmosphere for earth. The tables in Apps. A and B are for the earth’s
atmosphere. However, the physical principles and techniques discussed in this chapter
are also applicable to constructing model atmospheres for other planets, such as Venus,
Mars, and Jupiter. So the applicability of this chapter reaches far beyond the earth.

It should be mentioned that several different standard atmospheres exist, com-
piled by different agencies at different times, each using slightly different experi-
mental data in the models. For all practical purposes, the differences are insignificant
below 30 km (100,000 ft), which is the domain of contemporary airplanes. A standard
atmosphere in common use is the 1959 ARDC model atmosphere. (ARDC stands
for the U.S. Air Force’s previous Air Research and Development Command, which
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is now the Air Force Systems Command.) The atmospheric tables used in this book
are taken from the 1959 ARDC model atmosphere.
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3.1 DEFINITION OF ALTITUDE

Intuitively, we all know the meaning of altitude. We think of it as the distance above
the ground. But like so many other general terms, it must be more precisely defined
for quantitative use in engineering. In fact, in the following sections we define and
use six different altitudes: absolute, geometric, geopotential, pressure, temperature,
and density altitudes.

First, imagine that we are at Daytona Beach, Florida, where the ground is at sea
level. If we could fly straight up in a helicopter and drop a tape measure to the ground,
the measurement on the tape would be, by definition, the geometric altitude A, that
is, the geometric height above sea level.

Now, if we bored a hole through the ground to the center of the earth and extended
our tape measure until it hit the center, then the measurement on the tape would be, by
definition, the absolute altitude h,. If r is the radius of the earth, then b, = hg + 7.
This is illustrated in Fig. 3.2.

The absolute altitude is important, especially for space flight, becavse the local
acceleration of gravity g varies with 4,. From Newton’s law of gravitation, g varies
inversely as the square of the distance from the center of the earth. By letting go be

hg

Figure 3.2 Definition of altitude.



CHAPTER 3 e The Standard Atmosphere

the gravitational acceleration at sea level, the local gravitational acceleration g at a
given absolute altitude h,, is

=n() =a(55) 1
g =80 ha = 80 r+ho .

The variation of g with altitude must be taken into account when you are dealing with
mathematical models of the atmosphere, as discussed in the following sections.

3.2 HYDROSTATIC EQUATION

We will now begin to piece together a model which will allow us to calculate variations
of p, p,and T as functions of altitude. The foundation of this model is the hydrostatic
equation, which is nothing more than a force balance on an element of fluid at rest.
Consider the small stationary fluid element of air shown in Fig. 3.3. We take for
convenience an element with rectangular faces, where the top and bottom faces have
sides of unit length and the side faces have an infinitesimally small height dhs. On
the bottom face, the pressure p is felt, which gives rise to an upward force of p x 1 x 1
exerted on the fluid element. The top face is slightly higher in altitude (by the distance
dhg), and because pressure varies with altitude, the pressure on the top face will be
slightly different from that on the bottom face, differing by the infinitesimally small
value dp. Hence, on the top face, the pressure p + dp is felt. It gives rise to a
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Figure 3.3  Force diagram for the hydrostatic equation.
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downward force of (p+dp)(1)(1) on the fluid element. Moreover, the volume of the
fluid element is (1)(1) dhg = dhg, and since p is the mass per unit volume, then the
mass of the fluid element is simply p(1)(1)dhGg = pdhg. If the local acceleration
of gravity is g, then the weight of the fluid element is gp dhg, as shown in Fig. 3.3.
The three forces shown in Fig. 3.3, pressure forces on the top and bottom, and the
weight must balance because the fluid element is not moving. Hence

p=p+dp+pgdhc

Thus dp = —pgdhg [3.2]

Equation (3.2) is the hydrostatic equation and applies to any fluid of density p, for
example, water in the ocean as well as air in the atmosphere.

Strictly speaking, Eq. (3.2) is a differential equation; that is, it relates an in-
finitesimally small change in pressure dp to a corresponding infinitesimally small
change in altitude dhg, where in the language of differential calculus, dp and dhg
are differentials. Also note that g is a variable in Eq. (3.2): g depends on k¢ as given
by Eq. (3.1).

To be made useful, Eq. (3.2) should be integrated to give what we want, namely,
the variation of pressure with altitude p = p(hg). To simplify the integration, we
make the assumption that g is constant throughout the atmosphere, equal to its value
at sea level go. This is something of a historical convention in aeronautics. At the
altitudes encountered during the earlier development of human flight (less than 15 km
or 50,000 ft), the variation of g is negligible. Hence, we can write Eq. (3.2) as

dp = —pgodh [3.3]

However, to make Egs. (3.2) and (3.3) numerically identical, the altitude / in Eq.
(3.3) must be slightly different from kg in Eq. (3.2), to compensate for the fact that
g is slightly different from go. Suddenly, we have defined a new altitude h, which
is called the geopotential altitude and which differs from the geometric altitude. For
the practical mind, geopotential altitude is a “fictitious” altitude, defined by Eq. (3.3)
for ease of future calculations. However, many standard atmosphere tables quote
their results in terms of geopotential altitude, and care must be taken to make the
distinction. Again, geopotential altitude can be thought of as that fictitious altitude
which is physically compatible with the assumption of g = const = go.
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3.3 RELATION BETWEEN GEOPOTENTIAL
AND GEOMETRIC ALTITUDES

We still seek the variation of p with geometric altitude p = p(hg). However, our
calculations using Eq. (3.3) will give, instead, p = p(h). Therefore, we need to relate
h to hg, as follows. Dividing Eq. (3.3) by (3.2), we obtain
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| = 80 dh
" g dhg
£
or dh = =—dhg [3.4]
£0

We substitute Eq. (3.1) into (3.4):

2

dh = dhg [3.5]

”
(r+hg)?
By convention, we set both h and /i equal to zero at sea level. Now, consider a
given point in the atmosphere. This point is at a certain geometric altitude h¢, and
associated with it is a certain value of & (different from h¢). Integrating Eq. (3.5)
between sea level and the given point, we have

h he -2 he ” "
[ dh =f —’—.,dh(; =r2f ‘—IG—,
0 o (r+he) 0o (r+hg)*
4 -1

e o f 1 ] — h
fl:r"( ) =r'( +_)=r2(__r+r+ G)
r+hg 0 r+hg r (r+hg)r

=
Thus h= h 3.6
: r+hg g [3.6]

where h is geopotential altitude and h¢ is geometric altitude. This is the desired
relation between the two altitudes. When we obtain relations such as p = p(h), we
can use Eq. (3.6) to subsequently relate p to hg.

A quick calculation using Eq. (3.6) shows that there is little difference between
h and hg; for low altitudes. Forsuchacase, hg < r,r/(r+hg) ~ 1,hence h = hg.
Putting in numbers, r = 6.356766 x 10° m (at a latitude of 45°), and if hg = 7 km
(about 23,000 ft), then the corresponding value of A is, from Eq. (3.6), h = 6.9923 km,
about 0.1 of 1 percent difference! Only at altitudes above 65 km (213,000 ft) does the
difference exceed 1 percent. (Note that 65 km is an altitude at which aerodynamic
heating of NASA’s Space Shuttle becomes important during reentry into the earth’s
atmosphere from space.)

3.4 DEFINITION OF THE STANDARD ATMOSPHERE

We are now in a position to obtain p, T, and p as functions of h for the standard
atmosphere. The keystone of the standard atmosphere is a defined variation of T
with altitude, based on experimental evidence. This variation is shown in Fig. 3.4.
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Figure 3.4 Temperature distribution in the standard atmosphere.

Note that it consists of a series of straight lines, some vertical (called th; constant-
temperature, or isothermal, regions) and others inclined (called the gradient regions).
Given T = T'(h) as defined by Fig. 3.4, then p = p(h) and p = p(h) follow from
the laws of physics, as shown below.

First, consider again Eq. (3.3):

dp = —pgodh
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Divide by the equation of state, Eq. (2.3):

@ oih_ B, [3.7]

p PRT RT
Consider first the isothermal (constant-temperature) layers of the standard atmo-
sphere, as given by the vertical lines in Fig. 3.4 and sketched in Fig. 3.5. The
temperature, pressure, and density at the base of the isothermal layer shown in
Fig. 3.5 are T\, pi, and pj, respectively. The base is located at a given geopo-
tential altitude /). Now consider a given point in the isothermal layer above the base,
where the altitude is s The pressure p at & can be obtained by integrating Eq. (3.7)
between /i and h.

Pd h
f AT T [3.8]
m P RT h

Note that go, R, and T are constants that can be taken outside the integral. (This
clearly demonstrates the simplification obtained by assuming that g = go = const,
and therefore dealing with geopotential altitude 4 in the analysis.) Performing the
integration in Eq. (3.8), we obtain

14 £0
In—=——-(h—h
5 RT{ 1)
or ?)?’_ — ¢~ 120/(RT))(h—hy) [3.9]
1
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Figure 3.5  Isothermal layer.
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From the equation of state

B T B
o i p
Thitie P _ o~leo/(RD))(h=hy) [3.10]

o1

Equations (3.9) and (3.10) give the variation of p and p versus geopotential altitude
for the isothermal layers of the standard atmosphere.

Considering the gradient layers, as sketched in Fig. 3.6, we find the temperature
variation is linear and is geometrically given as

T-T daTr
h—h dh

where a is a specified constant for each layer obtained from the defined temperature
variation in Fig. 3.4. The value of a is sometimes called the lapse rate for the gradient
layers.

g dT
~ dh
1
Thus dh = EdT

Base of gradient region

e
T p1, P1

Figure 3.6  Gradient layer.
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We substitute this result into Eq. (3.7):
dp go dT

—p— R T (3.11]

Integrating between the base of the gradient layer (shown in Fig. 3.6) and some point
at altitude A, also in the gradient layer, Eq. (3.11) yields

[y
P

P aR Jr, T

oL go T
n-— =——In—
Pt aR T1

T —go/@R)
Thus ;:i = (ﬁ) [3.12]
1

From the equation of state

p _pT

p o
Hence, Eq. (3.12) becomes

oT T —go/{aR)
mTi (i)

o (T>tgo/(aR)1«1
o1 \T

7\ ~{lgo/@R)H1}
or L (~) [3.13]
P1 I3

Recall that the variation of T is linear with altitude and is given the specified relation

T =T +ath—hy) [3.14]

Equation (3.14) gives T = T (h) for the gradient layers; when it is plugged into Eq.
(3.12), we obtain p = p(h); similarly from Eq. (3.13) we obtain p = p(h).

Now we can see how the standard atmosphere is pieced together, Looking at
Fig. 3.4, start at sea level (B = 0), where standard sea level values of pressure,
density, and temperature—ps, Os, and T, respectively—are

ps = 1.01325 x 10° N/m?2 = 2116.2 1b/f?

g, = 1.2250 kg/m® = 0.002377 slug/ft’
T, = 288.16 K = 518.69°R

These are the base values for the first gradient region. Use Eq. (3.14) to obtain values
of T as a function of k until T = 216.66 K, which occurs at A = 11.0 km. With
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DEsIGN Box

The first step in the design process of a new aircraft
is the determination of a set of specifications, or
requirements, for the new vehicle. These specifi-
cations may include such performance aspects as a
stipulated maximum velocity at a given altitude, or a
stipulated maximum rate of climb at a given altitude.
These performance parameters depend on the aerody-
namic characteristics of the vehicle, such as lift and
drag. In turn, the lift and drag depend on the properties

of the atmosphere. When the specifications dictate cer-
tain performance at a given altitude, this altitude is
taken to be the standard altitude in the tables. There-
fore, in the preliminary design of an airplane, the de-
signer uses the standard atmosphere tables to define the
pressure, temperature, and density at the given altitude.
In this fashion, many calculations made during the pre-
liminary design of an airplane contain information from
the standard altitude tables.

these values of T', use Eqs. (3.12) and (3.13) to obtain the corresponding values of p
and p in the first gradient layer. Next, starting at & = 11.0 km as the base of the first
isothermal region (see Fig. 3.4), use Eqs. (3.9) and (3.10) to calculate values of p and
p versus h, until i = 25 km, which is the base of the next gradient region. In this
manner, with Fig. 3.4 and Egs. (3.9). (3.10), and (3.12) to (3.14), a table of values for
the standard atmosphere can be constructed.

Such a table is given in App. A for SI units and App. B for English engineering

units. Look at these tables carefully and become familiar with them. They are the
standard atmosphere. The first column gives the geometric altitude, and the second
column gives the corresponding geopotential altitude obtained from Eg. (3.6). The
third through fifth columns give the corresponding standard values of temperature,
pressure, and density, respectively, for each altitude, obtained from the discussion
above.

We emphasize again that the standard atmosphere is a reference atmosphere only

and certainly does not predict the actual atmospheric properties that may exist at a
given time and place. For example, App. A says that at an altitude (geometric) of
3km, p = 0.70121 x 10° N/m?, T = 268.67 K, and p = 0.90926 kg/m’. In
reality, situated where you are, if you could right now levitate yourself to 3 km above
sea level, you would most likely feel a p, T, and p different from the above values
obtained from App. A. The standard atmosphere allows us only to reduce test data
and calculations to a convenient, agreed-upon reference, as will be seen in subsequent
sections of this book.

Calculate the standard atmosphere values of T, p, and p at a geopotential altitude of 14 km.
Solution

Remember that T is a defined variation for the standard atmosphere. Hence, we can immedi-
ately refer to Fig. 3.4 and find that at & = 14 km,

T =216.66 K

Example 3.1






